Definition

Given a random variable $X$, its moment generating function (MGF) is defined as

\[\begin{align} M_X(t) = \mathbb{E}\left[e^{tX}\right] \end{align}\]

Prove $\mathbb{E}\left[X^k\right] = \mathbb{E}\left[M_X^{(k)}(0) \right]$

Superscript $^(k)$ means the kth derivative.

This property says that the $k$th moment of $X$ is equal to the expectation of the $k$th derivative wrt. $t$ at $t=0$.

Proof:

Given,

\[\begin{align} M_X^{(1)}(t) &= \frac{d M_X(t)}{dt} = \mathbb{E}\left[ X e^{tX}\right] \\ M_X^{(2)}(t) &= \frac{d^2 M_X(t)}{dt^2} = \mathbb{E}\left[ X^2 e^{tX}\right] \\ \vdots \\ M_X^{(k)}(t) &= \frac{d^k M_X(t)}{dt^k} = \mathbb{E}\left[ X^k e^{tX}\right] \\ \end{align}\]

so

\[\begin{align} M_X^{(1)}(0) &= \mathbb{E}\left[ X \right] \\ M_X^{(2)}(0) &= \mathbb{E}\left[ X^2 \right] \\ \vdots \\ M_X^{(k)}(0) &= \mathbb{E}\left[ X^k \right] \\ \end{align}\]

Prove $M_{aX + b}(t) = e^{bt}M_X(at)$

\[\begin{align} M_{aX + b}(t) &= \mathbb{E}\left[ e^{t(aX + b)} \right] \\ &= e^{bt} \mathbb{E}\left[ e^{atX)} \right] \\ &= e^{bt} M_X(at) \\ \end{align}\]

Prove $M_{X + Y}(t) = M_X(t) M_Y(t)$

Suppose $X$ and $Y$ are independent random variables, then

\[\begin{align} M_{X + Y}(t) &= \mathbb{E}\left[ e^{t(X + Y)} \right] \\ &= \mathbb{E}\left[ e^{tX} e^{tY} \right] \\ &= \iint_{x, y} e^{tX} e^{tY} f(X=x, Y=y) dx dy \\ &= \int_x e^{tX} f(X=x) dx \int_y e^{tY} (Y=y) dy \\ &= \mathbb{E}\left[ e^{tX} \right] \mathbb{E}\left[ e^{tY} \right] \\ &= M_X(t)M_Y(t) \\ \end{align}\]